

environmental health sciences
—— research center ——
Pulmonary Toxicology Facility

Pulmonary Toxicology Facility

PETER THORNE, PHD, PROF. & DIRECTOR
ANDREA ADAMCAKOVA-DODD, PHD, RESEARCH SCIENTIST
NERVANA METWALI, PHD, RESEARCH MANAGER
XUEFANG JING, PHD, RESEARCH SPECIALIST

JONG SUNG KIM, ASSOC. PROF.

PATRICK O'SHAUGHNESSY, PROF

PTF Rationale

The human lung exposes a surface area of 75 m² to the environment, far more than our skin or GI tract.

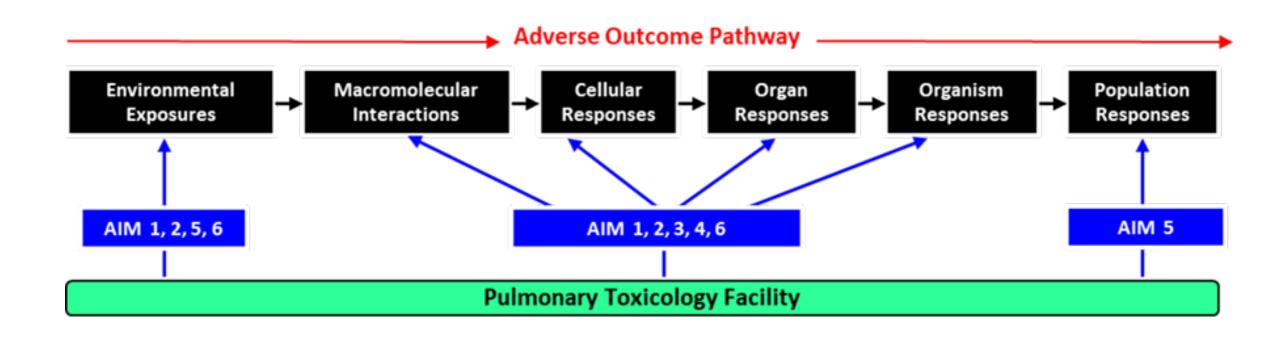
Many exposures with adverse health effects are from breathing airborne PM, hazardous chemicals, bioaerosols, and smoke from wildfires.

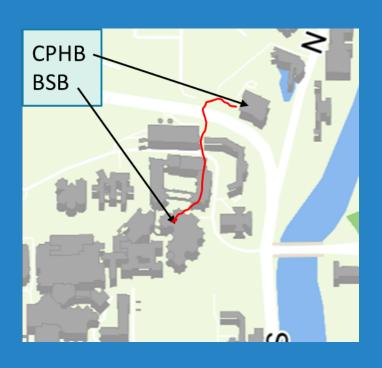
Every year there are an estimated 6.5 million premature deaths globally associated with indoor and outdoor air pollutants, exclusive of bioaerosols and viruses.

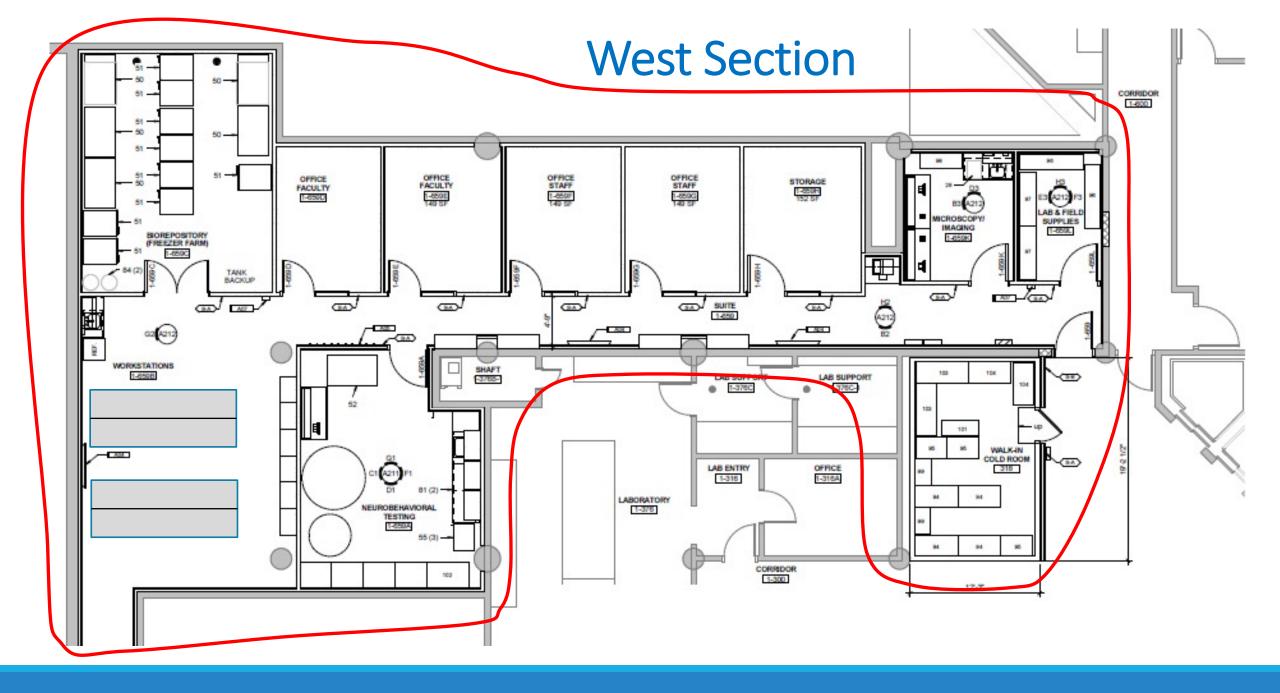
In rural environments people suffer ill effects from both chemical and biological hazards: farm chemicals, welding fumes, endotoxins and fungal glucans.

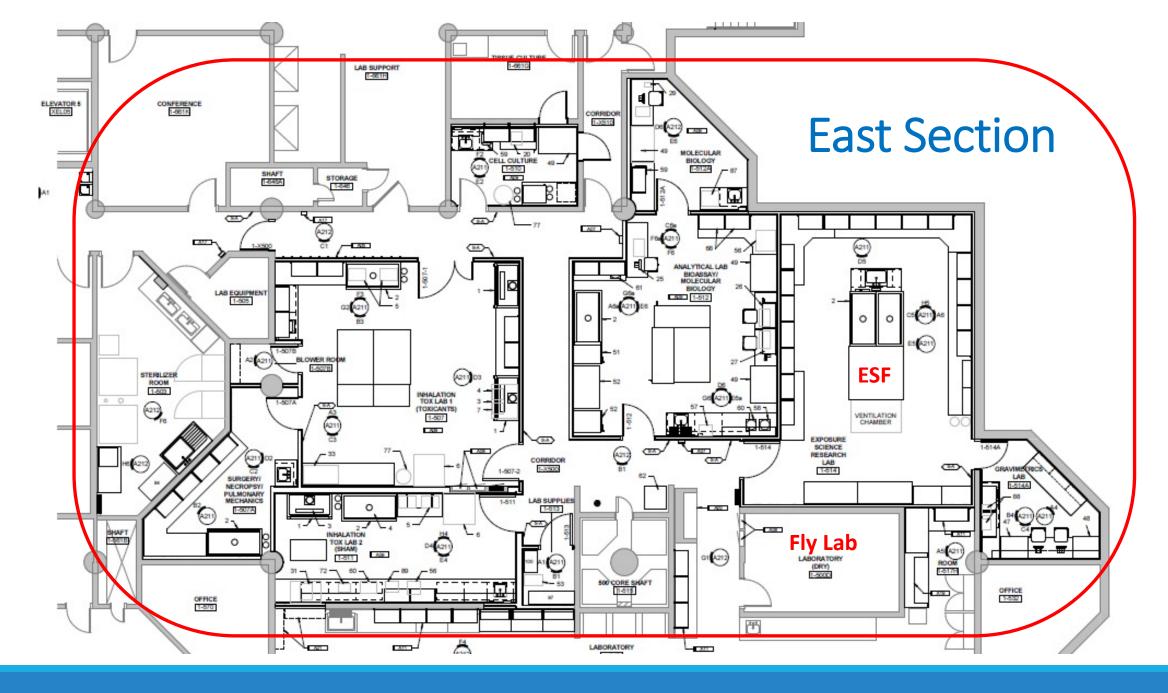
EHSRC investigators have a critical need to design, perform and analyze *in vitro* to *in vivo* to epidemiology studies investigating relevant pulmonary exposures.

The PTF fulfills that need.


Specific Aims


- Provide expertise and facilities for the use of animal models to elucidate adverse outcome pathways of xenobiotics or to test novel inhalation therapies;
- Design and perform inhalation exposure studies to groups of laboratory animals under rigidly controlled exposure conditions;
- Assess biomarkers and sensitive physiologic endpoints to identify biological response profiles, low-dose functional changes, and susceptibility factors;
- Provide high-content in vitro studies using tri-cultured lung cells exposed at the air-liquid interface;
- Perform exposure assessment of endotoxins, glucans, allergens, and metagenomics of microbial communities in support of epidemiologic studies of environmental lung diseases;
- > Facilitate pre-doctoral, post-doctoral and EHSRC member training.


PTF AOP Framework



New PTF Laboratories

- ☐ Since 2019 the PTF and ESF are colocated in the Human Toxicology and Exposomics Laboratory (HTEL)
- ☐ 6,500 sq ft (604 m²) in Bowen Science Building
- \$4,300,000 total gut and rebuild completed December 2018
- \$500,000 new equipment (thanks to the Roy G. Carver Charitable Trust)

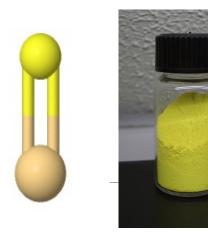
PTF Laboratories & Rooms

<u>Lab Name</u>	Size	Room #	Lab Name	Size	Room #
Inhalation Tox/Aerosols Lab I	620 ft ²	1-507	Biorepository (Freezer Farm)	407 ft ²	1-659C
Inhalation Tox/Aerosols Lab II	320 ft ²	1-511	Gravimetrics Lab	100 ft ²	1-514A
Molecular Biology Lab	138 ft ²	1-512A	Centrifuge Room	240 ft ²	1-504
Analytical/Bioassay Lab	518 ft ²	1-512	Sterilizer/Dish Washing Room	313 ft ²	1-503
Neurobehavioral Testing Lab	354 ft ²	1-659A	Cold Room, 4°C	210 ft ²	1-318
Exposure Science Lab (ESF)	705 ft ²	1-514	Supply Storage Room	95 ft ²	1-659L
Tissue Culture Lab	120 ft ²	1-510	Large Equipment Storage	400 ft ²	LL WL
Surgery/Necropsy Lab	198 ft ²	1-507A	Conference Room	475 ft ²	1-659B
Microscopy/Imaging Lab	125 ft ²	1-659K	Suite of 5 Offices	732 ft ²	1-659 D-H

Types of Research Supported

- Pulmonary Toxicology or Inhalation Therapeutics Projects
- Environmental Epidemiology Projects
- Exposure Assessment of Biological Agents for Epidemiology

Research Supported


Pulmonary Toxicology Models				
☐In vitro:				
subme	erged cell culture systems			
air liqu	uid interface exposures - single or multiple cell systems			
□In vivo:				
Mice,	rats, guinea pigs, ferrets, pigs			
Inhala	tion, insufflation, instillation			
Whole	e-body or nose-only exposures			
Expos	ures in whole-body plethysmographs with monitored breathing			
Acute	, subacute, subchronic, chronic exposure models			
Exposures	:			
Gases	, vapors, droplets, particulate matter, nanoparticles, therapeutic agents			
Extensive capabilities to generate, characterize, and monitor stable exposures				
Flexivent ar	nd plethysmograph systems for measuring pulmonary mechanics			
Neurobehavioral testing facilities				

Example:

Engineered Nanomaterials Inhalation Toxicology Assessment

NIEHS FUNDED STUDY

Cadmium Sulfide Inhalation Studies in Mice

Acute -4 hr, 1 day, 3.6 mg/m^3

Sub-acute – 4 hr, 10 days, 3.6 mg/m³, necropsy at 0 and 3 wks post

Timecourse – 4 hr, 14 days, 3.6 mg/m³, necropsy at 0, 4, 5, 8, 13 wks post

Perinatal – 4 hr, 17 (+ 22) days, 3.6 mg/m³, Dams and Pups

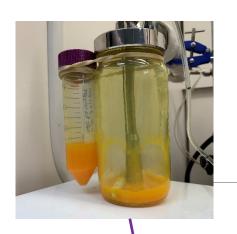
Nose-Only Inhalation Exposure System

Separate Systems for ENM-exposed and Sham-exposed

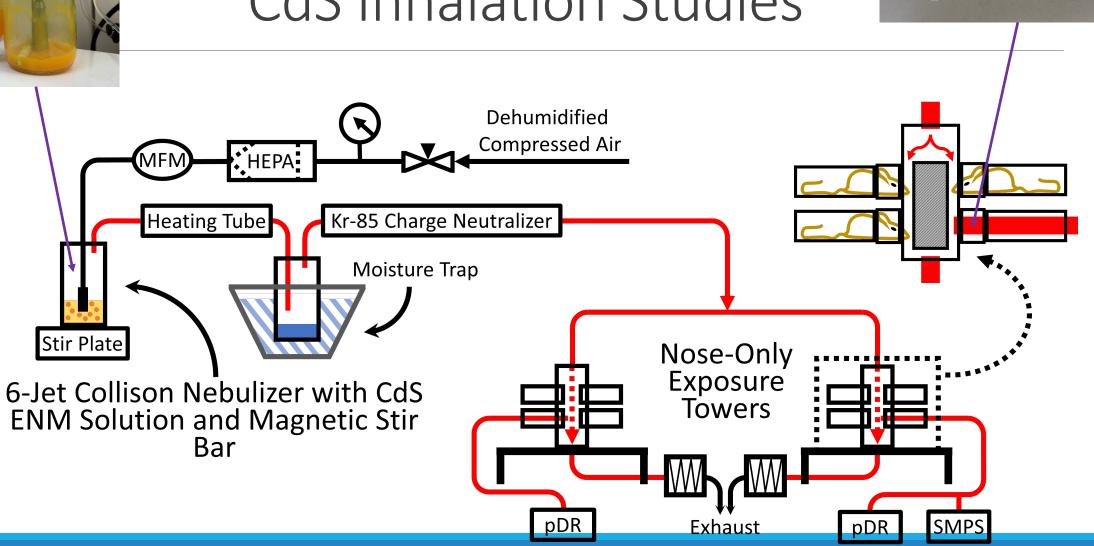
SciReq InExpose
System

ENM Particle Generation and Characterization

Generation: Collison Nebulizer

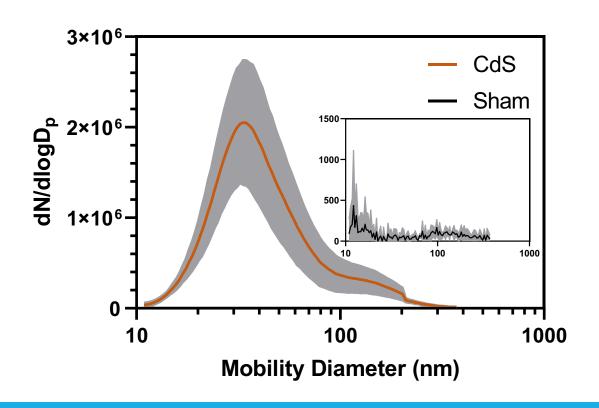

Characterization:

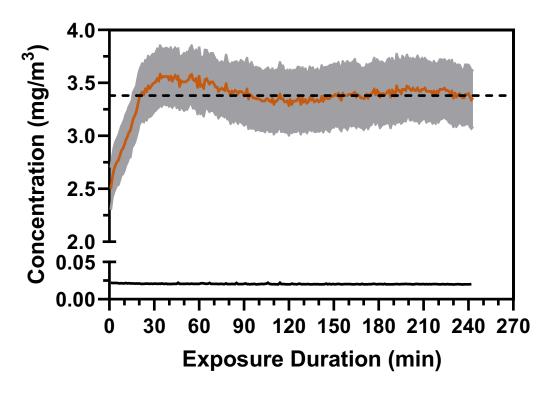
- Aerosol size distribution and concentration: SMPS, APS
- Primary size and aggregation: TEM, SEM-EDX
- Mass concentration: Chamber air sampling and gravimetric analysis



Stir Plate

Bar


CdS Inhalation Studies



CdS Inhalation Exposures


Protocol: Inhalation Exposure 5 days/wk, 4 hr/day at 3.5 mg/m³

CdS Perinatal Exposure Protocol

Examples of Current Studies

- Chlorine gas exposures for medical countermeasures research Salem, Thorne, Adamcakova-Dodd
- ❖ Mouse models of vaping-induced lung disease and EVALI − Ng, Adamcakova-Dodd, Thorne
- Inhalation delivery of CRISPR ribonucleoproteins, antisense oligos, and novel peptides for gene therapy McCray
- Trachea-on-a-Chip characterization of lung clearance Xie
- Inhalation studies of PCB 52 ISRP Lehmler, Klingelhutz
- ❖ PK/PD modeling of PCBs ^{14C}PCB 11, 28, 52 Adamu, Thorne, Adamcakova-Dodd
- Development of sensors to monitor GHG emissions in distributed networks Toor
- Assessment of exposures to cyanobacterial toxins (microcystins, anatoxins, saxitoxins, cylindrospermopsin) Metwali, Thorne
- ❖ Biological agents exposure assessment in U.S. households NHANES 2022-2024 Zeldin, Salo (NIEHS)
- Exposures to endotoxin allergens and glucans in intervention studies of asthma and COPD
 - SICAS 2, SICAS 3, PARK, EASY, IDEA, AERO-BPD, Smart-Phone

